Studying the nuclear pairing force through ¹⁸0(²⁶Mg, ²⁸Mg)¹⁶0

Zack Elledge and Dr. Gregory Christian

Weizsaecker Formula

- Binding energy based off of volume and surface terms (strong force), coulomb term (electrostatic force), asymmetry term, and pairing term
- Energy that holds the nucleus together

 $E_{b}(MeV) = a_{V}A - a_{S}A^{\frac{2}{3}} - a_{C}\frac{Z^{2}}{A^{\frac{1}{3}}} - a_{A}\frac{(A - 2Z)^{2}}{A} \pm \delta(A, Z)$ $+\delta_{0} for Z, N even$ $\delta(A, Z) = \begin{array}{c} +\delta_{0} for Z, N even\\ 0\\ -\delta_{0} for Z, N odd \end{array}$

Semi-empiracal Mass Formula. Digital image. Wikipedia. N.p., n.d. Web. 22 July 2016

Paired spin

- Half integral spins
- Usually spin pairing between protonproton, neutron-neutron but also proton-neutron
- Asymmetry term based on Pauli so some neutrons must be in higher energy state
- Even-even number of protons and neutrons are favorable
- Same number of protons and neutrons have larger binding energy because they have paired spin

Deuteron. Digital image. Skyblue. N.p., n.d. Web. 22 July 2016

Number of protons	Number of neutrons	Spin quantum number	Examples
Even	Even	0	¹² C, ¹⁶ O, ³² S
Odd	Even	1/2	¹ H, ¹⁹ F, ³¹ P
		3/2	¹¹ B, ³⁵ Cl, ⁷⁹ Br
Even	Odd	1/2	¹³ C
	"	3/2	127 _I
		5/2	17 _O
Odd	Odd	1	² H, ¹⁴ N

Nucleus Spin. Digital image. Nucleonica. N.p., n.d. Web. 22 July 2016.

Halo Neutrons

- Very weakly bound
- Can extend to nucleus with mass number
- Predicted Li-11 size 2.74 fm, Actual Li-11 size ~ 7.29 fm
- Very low density
- Wave function has small overlap with protons in nucleus

 $R = r_0 A^{1/3}$ $R = nuclear \ size$ $r_0 = 1.23 \ fm$ $A = mass \ number$

Lithium 11 Nucleus. Digital image. Triumf. N.p., n.d. Web. 22 July 2016.

 $^{18}O(^{26}Mg, ^{28}Mg)^{16}O$

- WO3 target .1 $^{\text{mg}}/_{\text{cm}^2}$
- Test viability of inverse kinematics
- Test by transferring two neutrons to unstable nucleus
- Higher cross section stronger pairing force
- O-16 is doubly magic

Binding Energy. Digital image. Hyperphysics. N.p., n.d. Web. 22 July 2016.

Inverse Kinematics

- Forward kinematics beam probes target
- Inverse target probes beam
- Can use rare isotope and radioactive beam that wouldn't be able to use with forward kinematics
- Can cover wider range than in forward kinematics

Tiara

- Silicon detectors measure energy and angle of recoiling Oxygen
- MDM uses dipole magnet to measure angle and energy of heavy Magnesium
- Germanium detectors measure gamma ray energy

Tiara. Digital image. Surrey. N.p., n.d. Web. 22 July 2016.

Finding cross sections

- Cross section relates to proton width
- Gate for single excitation energy
- Divide out detector efficiency
- Integrate over solid angle
- Plot frequency of ThetaCM

Angular Distribution for First Four Excitation Energies. Digital image. Aps. N.p., n.d. Web. 22 July 2016.

Excitation Energy

- Cannot pick out individual peaks
- Mean Excitation energy around 4 MeV

ELab vs ThetaCM curves

- Run Simulations of ${}^{18}O({}^{26}Mg, {}^{28}Mg){}^{16}O$
- To get width we analyze Elab vs ThetaCM curves
- Shape of angular distribution tells you the transferred orbital angular momentum.

Gamma Ray Simulations

- Branching ratios
- Gamma Ray Cascade

EGamma vs Ex

- Individual Excitation energies
- Different excitation energies emit different Gamma rays
- Pick out gamma rays specific to an excitation energy

EGamma vs ELab

- Can use Lab Energy of recoiling particles
- Pick gamma rays unique to certain excitation energies
- Gate around those areas

Conclusions

- ¹⁸O(²⁶Mg, ²⁸Mg)¹⁶O reaction can study nuclear pairing force
- Reaction suitable for inverse kinematics
- Low statistics and not having the ability to find 1.47 MeV state

Bibliography

- Fisher, T. R et. al. (1973). Gamma-Ray Spectroscopy of Low-Lying Levels in Mg 28. Phys. Rev. C Physical Review C, 7(5), 1878-1885. doi:10.1103/physrevc.7.1878
- Margerin, V. et al. (2015). Inverse Kinematic Study of the Al 26 g (d, p) Al 27 Reaction and Implications for Destruction of Al 26 in Wolf-Rayet and Asymptotic Giant Branch Stars. *Phys. Rev. Lett. Physical Review Letters, 115*(6). doi:10.1103/physrevlett.115.062701
- Pain, S. D et al. (2015). Constraint of the Astrophysical Al 26 g (p, γ) Si 27 Destruction Rate at Stellar Temperatures. *Phys. Rev. Lett. Physical Review Letters*, 114(21). doi:10.1103/physrevlett.114.212501
- Labiche, M., et al. (2010). TIARA: A large solid angle silicon array for direct reaction studies with radioactive beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,614(3), 439-448. doi:10.1016/j.nima.2010.01.009
- Bernas, M., et al. (1979). Mechanism of the Mg 26 (O 18, O 16) Mg 28 reaction at EO 18 = 50 MeV and the energy levels of Mg 28. *Phys. Rev. C Physical Review C, 19*(6), 2246-2258. doi:10.1103/physrevc.19.2246

Acknowledgements

- Texas A&M
- Department of Energy grant # DE-FG03-93ER40773
- National Science Foundation grant # PHY-1263281
- Dr. Gregory Christian

